Your browser doesn't support javascript.
loading
RNA-binding protein MEX3A controls G1/S transition via regulating the RB/E2F pathway in clear cell renal cell carcinoma.
Qiu, Yuntan; Meng, Meng; Cao, Chuanzhen; Zhang, Jingyuan; Cheng, Xu; Huang, Yongxin; Cao, Haotian; Li, Yun; Tian, Duanqing; Huang, Yongsheng; Peng, Li; Hu, Kaishun; Zhang, Yin; Liao, Jianyou; He, Jiehua; Wang, Xiaochun; Lu, Daning; Lin, Lehang; Bi, Xingang; Yin, Dong.
Afiliação
  • Qiu Y; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Meng M; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Cao C; Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
  • Zhang J; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Cheng X; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Huang Y; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Cao H; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Li Y; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Tian D; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Huang Y; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Peng L; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Hu K; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Zhang Y; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Liao J; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • He J; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Wang X; ShiLong Hospital (Research Center for Pneumoconiosis Prevention and Treatment), National Center For Occupational Safety and Health, NHC, Beijing 100021, China.
  • Lu D; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Lin L; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
  • Bi X; Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
  • Yin D; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
Mol Ther Nucleic Acids ; 27: 241-255, 2022 Mar 08.
Article em En | MEDLINE | ID: mdl-34976441
ABSTRACT
MEX3A is an RNA-binding protein that mediates mRNA decay through binding to 3' untranslated regions. However, its role and mechanism in clear cell renal cell carcinoma remain unknown. In this study, we found that MEX3A expression was transcriptionally activated by ETS1 and upregulated in clear cell renal cell carcinoma. Silencing MEX3A markedly reduced clear cell renal cell carcinoma cell proliferation in vitro and in vivo. Inhibiting MEX3A induced G1/S cell-cycle arrest. Gene set enrichment analysis revealed that E2F targets are the central downstream pathways of MEX3A. To identify MEX3A targets, systematic screening using enhanced cross-linking and immunoprecipitation sequencing, and RNA-immunoprecipitation sequencing assays were performed. A network of 4,000 genes was identified as potential targets of MEX3A. Gene ontology analysis of upregulated genes bound by MEX3A indicated that negative regulation of the cell proliferation pathway was highly enriched. Further assays indicated that MEX3A bound to the CDKN2B 3' untranslated region, promoting its mRNA degradation. This leads to decreased levels of CDKN2B and an uncontrolled cell cycle in clear cell renal cell carcinoma, which was confirmed by rescue experiments. Our findings revealed that MEX3A acts as a post-transcriptional regulator of abnormal cell-cycle progression in clear cell renal cell carcinoma.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Ther Nucleic Acids Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Ther Nucleic Acids Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China