Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy.
ACS Appl Bio Mater
; 4(11): 8023-8032, 2021 11 15.
Article
em En
| MEDLINE
| ID: mdl-35006783
Oxygen-dependent photodynamic therapy (PDT) could exacerbate tumor hypoxia to induce the upregulation of hypoxia-inducible factor-1α (HIF-1α), which would promote tumor growth and metastasis. In this paper, a self-remedied nanomedicine is developed based on a photosensitizer and a HIF-1α inhibitor to surmount the Achilles' heel of PDT for enhanced antitumor efficacy. Specifically, the nanomedicine (designated as CYC-1) is prepared by the self-assembly of chlorine e6 (Ce6) and 3-(5'-hydroxy-methyl-2'-furyl)-1-benzylindazole (YC-1) through π-π stacking and hydrophobic interactions. Of special note, carrier-free CYC-1 holds an extremely high drug loading rate and avoids excipient-triggered adverse reactions. Intravenously administered CYC-1 prefers to accumulate in the tumor tissue for effective cellular uptake. More importantly, it is verified that CYC-1 is capable of inhibiting the HIF-1α activity, thereby improving its PDT efficacy on tumor suppression. Besides, CYC-1 has the overwhelming superiority in restraining tumor proliferation over the combined administration of Ce6 and YC-1, which highlights the advantage of this self-remedied strategy in drug delivery and tumor therapy. This study sheds light on the development of self-delivery nanomedicine for efficient PDT against malignancies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fotoquimioterapia
/
Nanopartículas
Idioma:
En
Revista:
ACS Appl Bio Mater
Ano de publicação:
2021
Tipo de documento:
Article