Your browser doesn't support javascript.
loading
Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers.
Corrado, Iolanda; Di Girolamo, Rocco; Regalado-González, Carlos; Pezzella, Cinzia.
Afiliação
  • Corrado I; Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy.
  • Di Girolamo R; Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy.
  • Regalado-González C; Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas, Queretaro 76010, Mexico.
  • Pezzella C; Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
Polymers (Basel) ; 14(1)2022 Jan 01.
Article em En | MEDLINE | ID: mdl-35012189
ABSTRACT
Plant-derived essential oils (EOs) represent a green alternative to conventional antimicrobial agents in food preservation. Due to their volatility and instability, their application is dependent on the development of efficient encapsulation strategies allowing their protection and release control. Encapsulation in Polyhydroxyalkanoate (PHA)-based nanoparticles (NPs) addresses this challenge, providing a biodegradable and biobased material whose delivery properties can be tuned by varying polymer composition. In this work, EO from Mexican oregano was efficiently encapsulated in Polyhydroxybutyrate (PHB) and Poly-3-hydroxybutyrate-co-hydroxyhexanoate (PHB-HHx)-based NPs by solvent evaporation technique achieving high encapsulation efficiency, (>60%) and loading capacity, (about 50%). The obtained NPs displayed a regular distribution with a size range of 150-210 nm. In vitro release studies in food simulant media were fitted with the Korsmeyer-Peppas model, indicating diffusion as the main factor controlling the release. The cumulative release was affected by the polymer composition, possibly related to the more amorphous nature of the copolymer, as confirmed by WAXS and DSC analyses. Both the EO-loaded nanosystems displayed antimicrobial activity against Micrococcus luteus, with PHB-HHx-based NPs being even more effective than the pure EO. The results open the way to the effective exploitation of the developed nanosystems in active packaging.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Polymers (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Polymers (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália