Potent bactericidal activity of reduced cryptdin-4 derived from its hydrophobicity and mediated by bacterial membrane disruption.
Amino Acids
; 54(2): 289-297, 2022 Feb.
Article
em En
| MEDLINE
| ID: mdl-35037097
Defensin is a cysteine-rich antimicrobial peptide with three disulphide bonds under normal oxidative conditions. Cryptdin-4 (Crp4) is a defensin secreted by Paneth cells in the small intestine of mice, and only reduced Crp4 (Crp4red) shows activity against enteric commensal bacteria, although both oxidised Crp4 (Crp4ox) and Crp4red can kill non-commensal bacteria. To investigate the molecular factors that affect the potent antimicrobial activity of Crp4red, the bactericidal activities of Crp4ox and Crp4red, Crp4 with all Cys residues substituted with Ser peptide (6C/S-Crp4), and Crp4 with all thiol groups modified by N-ethylmaleimide (NEM-Crp4) were assessed. All peptides showed bactericidal activity against non-commensal bacteria, whereas Crp4red and NEM-Crp4 showed bactericidal activity against commensal bacteria. These potent peptides exhibited high hydrophobicity, which was strongly correlated with membrane insertion. Intriguingly, Crp4ox formed electrostatic interactions with the membrane surface of bacteria, even without exerting bactericidal activity. Moreover, the bactericidal activity of both oxidised and reduced forms of Crp4 was abolished by inhibition of electrostatic interactions; this finding suggests that Crp4red targets bacterial membranes. Finally, a liposome leakage assay against lipids extracted from commensal bacteria demonstrated a correlation with bactericidal activity. These results suggest that the potent bactericidal activity of Crp4red is derived from its hydrophobicity, and the bactericidal mechanism involves disruption of the bacterial membrane. Findings from this study provide a better understanding of the bactericidal mechanism of both Crp4ox and Crp4red.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Alfa-Defensinas
Limite:
Animals
Idioma:
En
Revista:
Amino Acids
Assunto da revista:
BIOQUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Japão