Your browser doesn't support javascript.
loading
Correcting for partial verification bias in diagnostic accuracy studies: A tutorial using R.
Arifin, Wan Nor; Yusof, Umi Kalsom.
Afiliação
  • Arifin WN; School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia.
  • Yusof UK; Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
Stat Med ; 41(9): 1709-1727, 2022 04 30.
Article em En | MEDLINE | ID: mdl-35043447
Diagnostic tests play a crucial role in medical care. Thus any new diagnostic tests must undergo a thorough evaluation. New diagnostic tests are evaluated in comparison with the respective gold standard tests. The performance of binary diagnostic tests is quantified by accuracy measures, with sensitivity and specificity being the most important measures. In any diagnostic accuracy study, the estimates of these measures are often biased owing to selective verification of the patients, which is referred to as partial verification bias. Several methods for correcting partial verification bias are available depending on the scale of the index test, target outcome, and missing data mechanism. However, these are not easily accessible to the researchers due to the complexity of the methods. This article aims to provide a brief overview of the methods available to correct for partial verification bias involving a binary diagnostic test and provide a practical tutorial on how to implement the methods using the statistical programming language R.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes Diagnósticos de Rotina Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Malásia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes Diagnósticos de Rotina Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Malásia