Your browser doesn't support javascript.
loading
MRI Metrics of Cerebral Endothelial Cell-Derived Exosomes for the Treatment of Cognitive Dysfunction Induced in Aging Rats Subjected to Type 2 Diabetes.
Ding, Guangliang; Li, Lian; Zhang, Li; Chopp, Michael; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Li, Chao; Wei, Min; Zhang, Zhenggang; Jiang, Quan.
Afiliação
  • Ding G; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Li L; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Zhang L; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Chopp M; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Davoodi-Bojd E; Department of Physics, Oakland University, Rochester, MI.
  • Li Q; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Li C; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Wei M; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Zhang Z; Department of Neurology, Henry Ford Hospital, Detroit, MI.
  • Jiang Q; Department of Neurology, Henry Ford Hospital, Detroit, MI.
Diabetes ; 71(5): 873-880, 2022 05 01.
Article em En | MEDLINE | ID: mdl-35175337
ABSTRACT
Ongoing neurovascular dysfunction contributes to type 2 diabetes mellitus (T2DM)-induced cognitive deficits. However, it is not known whether early post onset of T2DM interventions may reduce evolving neurovascular dysfunction and thereby lead to diminution of T2DM-induced cognitive deficits. Using multiple MRI metrics, we evaluated neurovascular changes in T2DM rats treated with exosomes derived from cerebral endothelial cells (CEC-Exos). Two months after induction of T2DM in middle-aged male rats by administration of streptozotocin nicotinamide, rats were randomly treated with CEC-Exos twice weekly or saline for 4 consecutive weeks (n = 10/group). MRI measurements were performed at the end of the treatment, which included cerebral blood flow (CBF), contrast-enhanced T1-weighted imaging, and relaxation time constants T1 and T2. MRI analysis showed that compared with controls, the CEC-Exo-treated T2DM rats exhibited significant elevation of T2 and CBF in white matter and significant augmentation of T1 and reduction of blood-brain barrier permeability in gray matter. In the hippocampus, CEC-Exo treatment significantly increased T1 and CBF. Furthermore, CEC-Exo treatment significantly reduced T2DM-induced cognitive deficits measured by the Morris water maze and odor recognition tests. Collectively, our corresponding MRI data demonstrate that treatment of T2DM rats with CEC-Exos robustly reduced neurovascular dysfunction in gray and white matter and the hippocampus.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Exossomos / Disfunção Cognitiva Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Diabetes Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 / Exossomos / Disfunção Cognitiva Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Diabetes Ano de publicação: 2022 Tipo de documento: Article