Your browser doesn't support javascript.
loading
EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells.
Zhou, Yeqiao; Petrovic, Jelena; Zhao, Jingru; Zhang, Wu; Bigdeli, Ashkan; Zhang, Zhen; Berger, Shelley L; Pear, Warren S; Faryabi, Robert B.
Afiliação
  • Zhou Y; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Petrovic J; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Zhao J; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Zhang W; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Bigdeli A; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Zhang Z; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Berger SL; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Pear WS; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Faryabi RB; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University
Mol Cell ; 82(5): 1003-1020.e15, 2022 03 03.
Article em En | MEDLINE | ID: mdl-35182476
Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Leucemia-Linfoma Linfoblástico de Células T Precursoras Limite: Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Leucemia-Linfoma Linfoblástico de Células T Precursoras Limite: Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos