Your browser doesn't support javascript.
loading
Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch.
Rouze, Ned C; Caenen, Annette; Nightingale, Kathryn R.
Afiliação
  • Rouze NC; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America.
  • Caenen A; Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
  • Nightingale KR; Department of Cardiovascular Sciences, KULeuven, Leuven, Belgium.
Phys Med Biol ; 67(9)2022 Apr 27.
Article em En | MEDLINE | ID: mdl-35263729
ABSTRACT
Objective.Determining elastic properties of materials from observations of shear wave propagation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this study, we derive expressions for the phase velocities of the SH and SV propagation modes as a function of propagation direction in an incompressible, hyperelastic material with uniaxial stretch.Approach.Wave motion is included in the material model by adding incremental, small amplitude motion to the initial, finite deformation. Equations of motion for the SH and SV propagation modes are constructed using the Cauchy stress tensor derived from the strain energy function of the material. Group velocities for the SH and SV propagation modes are derived from the angle-dependent phase velocities.Main results.Sample results are presented for the Arruda-Boyce, Mooney-Rivlin, and Isihara material models using model parameters previously determined in a phantom.Significance.Results for the Mooney-Rivlin and Isihara models demonstrate shear splitting in which the SH and SV propagation modes have unequal group velocities for propagation across the material symmetry axis. In addition, for sufficiently large stretch, the Arruda-Boyce and Isihara material models show cusp structures with triple-valued group velocities for the SV mode at angles of roughly 15° to the material symmetry axis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Med Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Med Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos