Your browser doesn't support javascript.
loading
Effects of Expanded Hemodialysis with Medium Cut-Off Membranes on Maintenance Hemodialysis Patients: A Review.
Zhang, Zhuyun; Yang, Tinghang; Li, Yupei; Li, Jiameng; Yang, Qinbo; Wang, Liya; Jiang, Luojia; Su, Baihai.
Afiliação
  • Zhang Z; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Yang T; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Li Y; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Li J; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Yang Q; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Wang L; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Jiang L; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Su B; Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China.
Membranes (Basel) ; 12(3)2022 Feb 23.
Article em En | MEDLINE | ID: mdl-35323729
ABSTRACT
Kidney failure is associated with high morbidity and mortality. Hemodialysis, the most prevalent modality of renal replacement therapy, uses the principle of semipermeable membranes to remove solutes and water in the plasma of patients with kidney failure. With the evolution of hemodialysis technology over the last half century, the clearance of small water-soluble molecules in such patients is adequate. However, middle molecules uremic toxins are still retained in the plasma and cause cardiovascular events, anemia, and malnutrition, which significantly contribute to poor quality of life and high mortality in maintenance hemodialysis patients. A new class of membrane, defined as a medium cut-off (MCO) membrane, has emerged in recent years. Expanded hemodialysis with MCO membranes is now recognized as the artificial kidney model closest to natural kidney physiology. This review summarizes the unique morphological characteristics and internal filtration-backfiltration mechanism of MCO membranes, and describes their effects on removing uremic toxins, alleviating inflammation and cardiovascular risk, and improving quality of life in maintenance hemodialysis patients.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Membranes (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China