Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques.
Sensors (Basel)
; 22(6)2022 Mar 18.
Article
em En
| MEDLINE
| ID: mdl-35336513
Diabetic retinopathy (DR) refers to the ophthalmological complications of diabetes mellitus. It is primarily a disease of the retinal vasculature that can lead to vision loss. Optical coherence tomography angiography (OCTA) demonstrates the ability to detect the changes in the retinal vascular system, which can help in the early detection of DR. In this paper, we describe a novel framework that can detect DR from OCTA based on capturing the appearance and morphological markers of the retinal vascular system. This new framework consists of the following main steps: (1) extracting retinal vascular system from OCTA images based on using joint Markov-Gibbs Random Field (MGRF) model to model the appearance of OCTA images and (2) estimating the distance map inside the extracted vascular system to be used as imaging markers that describe the morphology of the retinal vascular (RV) system. The OCTA images, extracted vascular system, and the RV-estimated distance map is then composed into a three-dimensional matrix to be used as an input to a convolutional neural network (CNN). The main motivation for using this data representation is that it combines the low-level data as well as high-level processed data to allow the CNN to capture significant features to increase its ability to distinguish DR from the normal retina. This has been applied on multi-scale levels to include the original full dimension images as well as sub-images extracted from the original OCTA images. The proposed approach was tested on in-vivo data using about 91 patients, which were qualitatively graded by retinal experts. In addition, it was quantitatively validated using datasets based on three metrics: sensitivity, specificity, and overall accuracy. Results showed the capability of the proposed approach, outperforming the current deep learning as well as features-based detecting DR approaches.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tomografia de Coerência Óptica
/
Retinopatia Diabética
Tipo de estudo:
Diagnostic_studies
/
Screening_studies
Limite:
Humans
Idioma:
En
Revista:
Sensors (Basel)
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Egito