Your browser doesn't support javascript.
loading
Erbium chloride silicate-based vertical cavity surface-emitting laser at the near-infrared communication band.
Opt Lett ; 47(7): 1610-1613, 2022 Apr 01.
Article em En | MEDLINE | ID: mdl-35363690
Silicon-based integrated optoelectronics has become a hotspot in the field of computers and information processing systems. An integrated coherent light source on-chip with a small footprint and high efficiency is one of the most important unresolved devices. Here, we realize a silicon-based vertical cavity surface-emitting laser in the near-infrared communication band by making efforts in both controlled preparation of high-gain erbium silicate materials and novel design of high optical feedback microcavity. Single-crystal erbium/ytterbium silicate microplates with erbium concentration as high as 5 × 1021 cm-3 are controlled prepared by a chemical vapor deposition method. They can produce strong luminescence with quite a long lifetime (2.3 ms) at the wavelength of 1.5 µm. By embedding the erbium silicate microplates between two dielectric Bragg reflectors, we construct a vertical cavity surface-emitting laser at 1.5 µm, with a lasing threshold as low as 20 µJ/cm2 and Q factor of nearly 2000. Our study provides a new pathway to achieve a sub-micrometer coherent light source for optical communication.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Lett Ano de publicação: 2022 Tipo de documento: Article