Your browser doesn't support javascript.
loading
Multiple instance learning for lung pathophysiological findings detection using CT scans.
Frade, Julieta; Pereira, Tania; Morgado, Joana; Silva, Francisco; Freitas, Cláudia; Mendes, José; Negrão, Eduardo; de Lima, Beatriz Flor; Silva, Miguel Correia da; Madureira, António J; Ramos, Isabel; Costa, José Luís; Hespanhol, Venceslau; Cunha, António; Oliveira, Hélder P.
Afiliação
  • Frade J; INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
  • Pereira T; FEUP - Faculty of Engineering, University of Porto, Porto, Portugal.
  • Morgado J; INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal. tania.pereira@inesctec.pt.
  • Silva F; INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
  • Freitas C; FCUP -Faculty of Science, University of Porto, Porto, Portugal.
  • Mendes J; INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
  • Negrão E; FEUP - Faculty of Engineering, University of Porto, Porto, Portugal.
  • de Lima BF; FMUP - Faculty of Medicine, University of Porto, Porto, Portugal.
  • Silva MCD; CHUSJ - Centro Hospitalar e Universitário de São João, Porto, Portugal.
  • Madureira AJ; INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.
  • Ramos I; FEUP - Faculty of Engineering, University of Porto, Porto, Portugal.
  • Costa JL; CHUSJ - Centro Hospitalar e Universitário de São João, Porto, Portugal.
  • Hespanhol V; CHUSJ - Centro Hospitalar e Universitário de São João, Porto, Portugal.
  • Cunha A; CHUSJ - Centro Hospitalar e Universitário de São João, Porto, Portugal.
  • Oliveira HP; FMUP - Faculty of Medicine, University of Porto, Porto, Portugal.
Med Biol Eng Comput ; 60(6): 1569-1584, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35386027
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enfisema / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Portugal

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enfisema / Neoplasias Pulmonares Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Med Biol Eng Comput Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Portugal