Your browser doesn't support javascript.
loading
High-Temperature Superconducting Phase in Clathrate Calcium Hydride CaH_{6} up to 215 K at a Pressure of 172 GPa.
Ma, Liang; Wang, Kui; Xie, Yu; Yang, Xin; Wang, Yingying; Zhou, Mi; Liu, Hanyu; Yu, Xiaohui; Zhao, Yongsheng; Wang, Hongbo; Liu, Guangtao; Ma, Yanming.
Afiliação
  • Ma L; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
  • Wang K; International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China.
  • Xie Y; International Center of Future Science, Jilin University, Changchun 130012, China.
  • Yang X; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
  • Wang Y; International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China.
  • Zhou M; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
  • Liu H; International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China.
  • Yu X; Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130012, China.
  • Zhao Y; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
  • Wang H; International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China.
  • Liu G; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
  • Ma Y; International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China.
Phys Rev Lett ; 128(16): 167001, 2022 Apr 22.
Article em En | MEDLINE | ID: mdl-35522494
ABSTRACT
The recent discovery of superconductive rare earth and actinide superhydrides has ushered in a new era of superconductivity research at high pressures. This distinct type of clathrate metal hydrides was first proposed for alkaline-earth-metal hydride CaH_{6} that, however, has long eluded experimental synthesis, impeding an understanding of pertinent physics. Here, we report successful synthesis of CaH_{6} and its measured superconducting critical temperature T_{c} of 215 K at 172 GPa, which is evidenced by a sharp drop of resistivity to zero and a characteristic decrease of T_{c} under a magnetic field up to 9 T. An estimate based on the Werthamer-Helfand-Hohenberg model gives a giant zero-temperature upper critical magnetic field of 203 T. These remarkable benchmark superconducting properties place CaH_{6} among the most outstanding high-T_{c} superhydrides, marking it as the hitherto only clathrate metal hydride outside the family of rare earth and actinide hydrides. This exceptional case raises great prospects of expanding the extraordinary class of high-T_{c} superhydrides to a broader variety of compounds that possess more diverse material features and physics characteristics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China