Prediction models for early diagnosis of actinomycotic osteomyelitis of the jaw using machine learning techniques: a preliminary study.
BMC Oral Health
; 22(1): 164, 2022 05 06.
Article
em En
| MEDLINE
| ID: mdl-35524204
BACKGROUND: This study aimed to develop and validate five machine learning models designed to predict actinomycotic osteomyelitis of the jaw. Furthermore, this study determined the relative importance of the predictive variables for actinomycotic osteomyelitis of the jaw, which are crucial for clinical decision-making. METHODS: A total of 222 patients with osteomyelitis of the jaw were analyzed, and Actinomyces were identified in 70 cases (31.5%). Logistic regression, random forest, support vector machine, artificial neural network, and extreme gradient boosting machine learning methods were used to train the models. The models were subsequently validated using testing datasets. These models were compared with each other and also with single predictors, such as age, using area under the receiver operating characteristic (ROC) curve (AUC). RESULTS: The AUC of the machine learning models ranged from 0.81 to 0.88. The performance of the machine learning models, such as random forest, support vector machine and extreme gradient boosting was significantly superior to that of single predictors. Presumed causes, antiresorptive agents, age, malignancy, hypertension, and rheumatoid arthritis were the six features that were identified as relevant predictors. CONCLUSIONS: This prediction model would improve the overall patient care by enhancing prognosis counseling and informing treatment decisions for high-risk groups of actinomycotic osteomyelitis of the jaw.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Osteomielite
/
Aprendizado de Máquina
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
/
Risk_factors_studies
/
Screening_studies
Limite:
Humans
Idioma:
En
Revista:
BMC Oral Health
Assunto da revista:
ODONTOLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Coréia do Sul