Your browser doesn't support javascript.
loading
Variations of disinfection byproduct precursors through conventional drinking water treatment processes and a real-time monitoring method.
Zhang, Xiaoxiao; Shen, Jimin; Huo, Xiaoyu; Li, Jianwei; Zhou, Yaoyu; Kang, Jing; Chen, Zhonglin; Chu, Wei; Zhao, Shengxin; Bi, Lanbo; Xu, Xiaotong; Wang, Binyuan.
Afiliação
  • Zhang X; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
  • Shen J; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Huo X; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Li J; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
  • Zhou Y; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
  • Kang J; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Chen Z; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address: zhonglinchen@hit.edu.cn.
  • Chu W; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address: wei.chu@polyu.edu.hk.
  • Zhao S; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Bi L; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Xu X; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
  • Wang B; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
Chemosphere ; 272: 129930, 2021 Jun.
Article em En | MEDLINE | ID: mdl-35534977
In this investigation, raw water (RW), settled water (SW), and filtered water (FW) collected from a drinking water treatment plant were fractionated into 24 natural organic matter (NOM) fractions with varying molecular weights and hydrophobicity. The yields of disinfection byproducts (DBPs) obtained during the chlorination of the NOM fractions were explored. Results revealed that the 0-1 kDa, 5-10 kDa, and hydrophobic DBP precursors dominated RW. Hydrophobic fractions cannot be effectively removed, which contributed to the high DBP precursors remaining in the FW. The optional optical parameters, including UVA (UV340, UV360, and UV380), UVB (UV280, UV300, and UV310), and UVC (UV254, UV260, and UV272), were analyzed to determine the DBP yields during chlorination of different NOM fractions. Results revealed that UVC could be applied to indicate the regulated DBP yields of the humified precursors. Contrary to the generally accepted view, for biologically derived precursors, their regulated DBPs and dichloroacetonitrile correlated better with UVA (e.g. UV340). Moreover, PARAFAC analysis was applied to decompose an array of 24 EEM spectra. Good linear correlations were found between the PARAFAC components and most DBP yields. Furthermore, four fluorescence parameters were proposed via a modified fluorescence picking method, which can serve as excellent surrogates of PARAFAC components. These fluorescence parameters were found to be effective in indicating most DBP yields. Finally, the fluorescence intensity at excitation wavelength/emission wavelength = 310/416 nm was found to be a promising built-in parameter for the real-time monitoring of DBP precursors, regardless of the humification degree of the precursors.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Potável / Purificação da Água / Desinfetantes Idioma: En Revista: Chemosphere Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Potável / Purificação da Água / Desinfetantes Idioma: En Revista: Chemosphere Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China