Your browser doesn't support javascript.
loading
Derivation of functional trophoblast stem cells from primed human pluripotent stem cells.
Soncin, Francesca; Morey, Robert; Bui, Tony; Requena, Daniela F; Cheung, Virginia Chu; Kallol, Sampada; Kittle, Ryan; Jackson, Madeline G; Farah, Omar; Chousal, Jennifer; Meads, Morgan; Pizzo, Donald; Horii, Mariko; Fisch, Kathleen M; Parast, Mana M.
Afiliação
  • Soncin F; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Morey R; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA.
  • Bui T; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Requena DF; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Cheung VC; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jol
  • Kallol S; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Kittle R; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Jackson MG; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Farah O; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Chousal J; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Meads M; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Pizzo D; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
  • Horii M; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA.
  • Fisch KM; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA.
  • Parast MM; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA. Electronic address: mparast@ucsd.edu.
Stem Cell Reports ; 17(6): 1303-1317, 2022 06 14.
Article em En | MEDLINE | ID: mdl-35594858
ABSTRACT
Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs. We show that these cells resemble placenta- and naive hPSC-derived TSCs, based on their transcriptome as well as their in vitro and in vivo differentiation potential. We conclude that primed hPSCs can be used to generate functional TSCs through a simple protocol, which can be applied to a widely available set of existing hPSCs, including induced pluripotent stem cells, derived from patients with known birth outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes / Células-Tronco Pluripotentes Induzidas Limite: Female / Humans / Pregnancy Idioma: En Revista: Stem Cell Reports Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco Pluripotentes / Células-Tronco Pluripotentes Induzidas Limite: Female / Humans / Pregnancy Idioma: En Revista: Stem Cell Reports Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos