Your browser doesn't support javascript.
loading
Capturing and tracing the spatiotemporal variations of planktonic and particle-associated bacteria in an unchlorinated drinking water distribution system.
Chen, Lihua; Li, Xuan; van der Meer, Walter; Medema, Gertjan; Liu, Gang.
Afiliação
  • Chen L; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R China; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Bo
  • Li X; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands.
  • van der Meer W; Membrane Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands; Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, Gouda 2801 SB, the Netherlands.
  • Medema G; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft 2600 GA, the Netherlands; KWR Water Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands; Michigan State University, 1405 S Harri
  • Liu G; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R China; Department of Water Management, Sanitary Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Bo
Water Res ; 219: 118589, 2022 Jul 01.
Article em En | MEDLINE | ID: mdl-35597222
ABSTRACT
The aperiodic changes in the quantity and community of planktonic and particle-associated bacteria have hampered the understanding and management of microbiological water quality in drinking water distribution systems. In this study, online sampling was combined with the microbial fingerprint-based SourceTracker2 to capture and trace the spatiotemporal variations in planktonic and particle-associated bacteria in an unchlorinated distribution system. The results showed that spatially, the particle load significantly increased, while in contrast, the quantity of particle-associated bacteria decreased sharply from the treatment plant to the distribution network. Similar to the trend of particle-associated bacterial diversity, the number of observed OTUs first slightly decreased from the treatment plant to the transportation network and then sharply increased from the transportation network to the distribution network. The SourceTracker2 results revealed that the contribution of particle-associated bacteria from the treatment plant decreased along the distribution distance. The spatial results indicate the dominant role of sedimentation of particles from the treatment plant, while the observed increases in particles and the associated bacteria mainly originated from the distribution network, which were confirmed directly by the increased contributions of loose deposits and biofilm. Temporally, the daily peaks of particle-associated bacterial quantity, observed OTU number, and contributions of loose deposits and biofilms were captured during water demand peaks (e.g., 18-21 h). The temporal results reveal clear linkages between the distribution system harboring bacteria (e.g., within loose deposits and biofilms) and the planktonic and particle-associated bacteria flowing through the distribution system, which are dynamically connected and interact. This study highlights that the spatiotemporal variations in planktonic and particle-associated bacteria are valuable and unneglectable for the widely on-going sampling campaigns required by water quality regulations and/or drinking water microbiological studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plâncton / Água Potável Tipo de estudo: Risk_factors_studies Idioma: En Revista: Water Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plâncton / Água Potável Tipo de estudo: Risk_factors_studies Idioma: En Revista: Water Res Ano de publicação: 2022 Tipo de documento: Article