Your browser doesn't support javascript.
loading
Sensitivity of modeled residential fine particulate matter exposure to select building and source characteristics: A case study using public data in Boston, MA.
Milando, Chad W; Carnes, Fei; Vermeer, Kimberly; Levy, Jonathan I; Fabian, M Patricia.
Afiliação
  • Milando CW; Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA. Electronic address: cmilando@bu.edu.
  • Carnes F; Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.
  • Vermeer K; Urban Habitat Initiatives Inc., 328A Tremont Street, Boston, MA 02116, USA.
  • Levy JI; Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.
  • Fabian MP; Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.
Sci Total Environ ; 840: 156625, 2022 Sep 20.
Article em En | MEDLINE | ID: mdl-35691344
Many techniques for estimating exposure to airborne contaminants do not account for building characteristics that can magnify contaminant contributions from indoor and outdoor sources. Building characteristics that influence exposure can be challenging to obtain at scale, but some may be incorporated into exposure assessments using public datasets. We present a methodology for using public datasets to generate housing models for a test cohort, and examined sensitivity of predicted fine particulate matter (PM2.5) exposures to selected building and source characteristics. We used addresses of a cohort of children with asthma and public tax assessor's data to guide selection of floorplans of US residences from a public database. This in turn guided generation of coupled multi-zone models (CONTAM and EnergyPlus) that estimated indoor PM2.5 exposure profiles. To examine sensitivity to model parameters, we varied building floors and floorplan, heating, ventilating and air-conditioning (HVAC) type, room or floor-level model resolution, and indoor source strength and schedule (for hypothesized gas stove cooking and tobacco smoking). Occupant time-activity and ambient pollutant levels were held constant. Our address matching methodology identified two multi-family house templates and one single-family house template that had similar characteristics to 60 % of test addresses. Exposure to infiltrated ambient PM2.5 was similar across selected building characteristics, HVAC types, and model resolutions (holding all else equal). By comparison, exposures to indoor-sourced PM2.5 were higher in the two multi-family residences than the single family residence (e.g., for cooking PM2.5 exposure, by 26 % and 47 % respectively) and were sensitive to HVAC type and model resolution. We derived the influence of building characteristics and HVAC type on PM2.5 exposure indoors using public data sources and coupled multi-zone models. With the important inclusion of individualized resident behavior data, similar housing modeling can be used to incorporate exposure variability in health studies of the indoor residential environment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluição do Ar em Ambientes Fechados / Poluentes Atmosféricos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Child / Humans País/Região como assunto: America do norte Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluição do Ar em Ambientes Fechados / Poluentes Atmosféricos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Child / Humans País/Região como assunto: America do norte Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article