Your browser doesn't support javascript.
loading
Symbiopectobacterium purcellii, gen. nov., sp. nov., isolated from the leafhopper Empoasca decipiens.
Nadal-Jimenez, Pol; Siozios, Stefanos; Halliday, Nigel; Cámara, Miguel; Hurst, Gregory D D.
Afiliação
  • Nadal-Jimenez P; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
  • Siozios S; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
  • Halliday N; The National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
  • Cámara M; The National Biofilms Innovation Centre, School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK.
  • Hurst GDD; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
Article em En | MEDLINE | ID: mdl-35695864
ABSTRACT
Bacterial endosymbionts are found in multiple arthropod species, where they play crucial roles as nutritional symbionts, defensive symbionts or reproductive parasites. Recent work has highlighted a new clade of heritable microbes within the gammaproteobacteria that enter into both obligate and facultative symbioses, with an obligately required unculturable symbiont recently given the name Candidatus Symbiopectobacterium. In this study, we describe a culturable rod shaped non-flagellated bacterial symbiont from this clade isolated from the leafhopper Empoasca decipiens. The symbiont is related to the transovarially transmitted 'BEV' bacterium that was first isolated from the leafhopper Euscelidius variegatus by Alexander Purcell, and we therefore name the symbiont Symbiopectobacterium purcellii sp. nov., gen. nov. We further report the closed genome sequence for S. purcellii. The genome is atypical for a heritable microbe, being large in size, without profound AT bias and with little evidence of pseudogenization. The genome is predicted to encode Type II, III and VI secretion systems and associated effectors and a non-ribosomal peptide synthase array likely to produce bioactive small molecules. The predicted metabolism is more complete than for other symbionts in the Symbiopectobacterium clade, and the microbe is predicted to synthesize a range of B vitamins. However, Biolog plate results indicate that the metabolism is depauperate compared to the sister clade, represented by Pectobacterium carotovorum. A quorum-sensing pathway related to that of Pectobacterium species (containing an overlapping expI-expR1 pair in opposite directions and a "solo" expR2) is evidenced, and LC-MS/MS analysis reveals the presence of 3-hydroxy-C10-HSL as the sole N-acylhomoserine lactone (AHL) in our strain. This AHL profile is profoundly divergent from that of other Erwinia and Pectobacterium species which produce mostly 3-oxo-C6- and 3-oxo-C8-HSL and could aid group identification. Thus, this microbe denotes one that has lost certain pathways associated with a saprophytic lifestyle but represents an important baseline against which to compare other members of the genus Symbiopectobacterium that show more profound integration into host biology. The type strain of Symbiopectobacterium purcellii gen. nov., sp. nov. is SyEd1T (LMG 32449T=CECT 30436T).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pectobacterium / Hemípteros Limite: Animals Idioma: En Revista: Int J Syst Evol Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pectobacterium / Hemípteros Limite: Animals Idioma: En Revista: Int J Syst Evol Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido