Your browser doesn't support javascript.
loading
Exosomal miR-145 and miR-885 Regulate Thrombosis in COVID-19.
Gambardella, Jessica; Kansakar, Urna; Sardu, Celestino; Messina, Vincenzo; Jankauskas, Stanislovas S; Marfella, Raffaele; Maggi, Paolo; Wang, Xujun; Mone, Pasquale; Paolisso, Giuseppe; Sorriento, Daniela; Santulli, Gaetano.
Afiliação
  • Gambardella J; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Kansakar U; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Sardu C; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Messina V; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Jankauskas SS; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Marfella R; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Maggi P; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Wang X; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Mone P; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Paolisso G; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Sorriento D; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
  • Santulli G; Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (F
J Pharmacol Exp Ther ; 384(1): 109-115, 2023 01.
Article em En | MEDLINE | ID: mdl-35772782
ABSTRACT
We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trombose / MicroRNAs / Exossomos / COVID-19 / Síndrome de COVID-19 Pós-Aguda Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trombose / MicroRNAs / Exossomos / COVID-19 / Síndrome de COVID-19 Pós-Aguda Limite: Humans Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2023 Tipo de documento: Article