Your browser doesn't support javascript.
loading
Elasticity of podosome actin networks produces nanonewton protrusive forces.
Jasnin, Marion; Hervy, Jordan; Balor, Stéphanie; Bouissou, Anaïs; Proag, Amsha; Voituriez, Raphaël; Schneider, Jonathan; Mangeat, Thomas; Maridonneau-Parini, Isabelle; Baumeister, Wolfgang; Dmitrieff, Serge; Poincloux, Renaud.
Afiliação
  • Jasnin M; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany. jasnin@biochem.mpg.de.
  • Hervy J; Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
  • Balor S; Plateforme de Microscopie Électronique Intégrative, Centre de Biologie Intégrative, CNRS, UPS, Toulouse, France.
  • Bouissou A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
  • Proag A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
  • Voituriez R; Laboratoire Jean Perrin, CNRS, Sorbonne Université, Paris, France.
  • Schneider J; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
  • Mangeat T; LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France.
  • Maridonneau-Parini I; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
  • Baumeister W; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
  • Dmitrieff S; Université de Paris, CNRS, Institut Jacques Monod, Paris, France. serge.dmitrieff@ijm.fr.
  • Poincloux R; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France. renaud.poincloux@ipbs.fr.
Nat Commun ; 13(1): 3842, 2022 07 04.
Article em En | MEDLINE | ID: mdl-35789161
ABSTRACT
Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Podossomos Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Podossomos Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha