A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin.
Comput Intell Neurosci
; 2022: 5077134, 2022.
Article
em En
| MEDLINE
| ID: mdl-35909837
Digital twin (DT) is an important method to realize intelligent manufacturing. Traditional data-based fault diagnosis methods such as fractional-order fault feature extraction methods require sufficient data to train a diagnosis model, which is unrealistic in a dynamically changing production process. The ultrahigh-fidelity DT model can generate fault state data similar to the actual system, providing a new paradigm for fault diagnosis. This paper proposes a novel digital twin-assisted fault diagnosis method for denoising autoencoder. First, in order to solve the problem of limited or unavailable fault state data for machines in dynamically variable production scenarios, a DT model of the machine is established. The model can simulate a dynamically changing production process, thereby generating data for different failure states. Second, a novel denoising autoencoder (NDAE) with Mish as the activation function is proposed and trained using the source domain data generated by DT. Finally, in order to verify the effectiveness and feasibility of the proposed method, the method is applied to a fault diagnosis example of a triplex pump, and the results show that the method can realize intelligent fault diagnosis when the fault state data are limited or unavailable.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Comput Intell Neurosci
Assunto da revista:
INFORMATICA MEDICA
/
NEUROLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China