DAGBagM: learning directed acyclic graphs of mixed variables with an application to identify protein biomarkers for treatment response in ovarian cancer.
BMC Bioinformatics
; 23(1): 321, 2022 Aug 05.
Article
em En
| MEDLINE
| ID: mdl-35931981
BACKGROUND: Applying directed acyclic graph (DAG) models to proteogenomic data has been shown effective for detecting causal biomarkers of complex diseases. However, there remain unsolved challenges in DAG learning to jointly model binary clinical outcome variables and continuous biomarker measurements. RESULTS: In this paper, we propose a new tool, DAGBagM, to learn DAGs with both continuous and binary nodes. By using appropriate models, DAGBagM allows for either continuous or binary nodes to be parent or child nodes. It employs a bootstrap aggregating strategy to reduce false positives in edge inference. At the same time, the aggregation procedure provides a flexible framework to robustly incorporate prior information on edges. CONCLUSIONS: Through extensive simulation experiments, we demonstrate that DAGBagM has superior performance compared to alternative strategies for modeling mixed types of nodes. In addition, DAGBagM is computationally more efficient than two competing methods. When applying DAGBagM to proteogenomic datasets from ovarian cancer studies, we identify potential protein biomarkers for platinum refractory/resistant response in ovarian cancer. DAGBagM is made available as a github repository at https://github.com/jie108/dagbagM .
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Ovarianas
Tipo de estudo:
Prognostic_studies
Limite:
Child
/
Female
/
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos