Your browser doesn't support javascript.
loading
Demystifying non-coding GWAS variants: an overview of computational tools and methods.
Schipper, Marijn; Posthuma, Danielle.
Afiliação
  • Schipper M; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1105, Amsterdam 1081HV, The Netherlands.
  • Posthuma D; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1105, Amsterdam 1081HV, The Netherlands.
Hum Mol Genet ; 31(R1): R73-R83, 2022 10 20.
Article em En | MEDLINE | ID: mdl-35972862
Genome-wide association studies (GWAS) have found the majority of disease-associated variants to be non-coding. Major efforts into the charting of the non-coding regulatory landscapes have allowed for the development of tools and methods which aim to aid in the identification of causal variants and their mechanism of action. In this review, we give an overview of current tools and methods for the analysis of non-coding GWAS variants in disease. We provide a workflow that allows for the accumulation of in silico evidence to generate novel hypotheses on mechanisms underlying disease and prioritize targets for follow-up study using non-coding GWAS variants. Lastly, we discuss the need for comprehensive benchmarks and novel tools for the analysis of non-coding variants.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polimorfismo de Nucleotídeo Único / Estudo de Associação Genômica Ampla Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polimorfismo de Nucleotídeo Único / Estudo de Associação Genômica Ampla Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Holanda