Your browser doesn't support javascript.
loading
Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells.
Fontelo, R; da Costa, D Soares; Reis, R L; Novoa-Carballal, R; Pashkuleva, I.
Afiliação
  • Fontelo R; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc
  • da Costa DS; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc
  • Reis RL; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc
  • Novoa-Carballal R; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc
  • Pashkuleva I; 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barc
Colloids Surf B Biointerfaces ; 219: 112774, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36067682
ABSTRACT
Bone healing after a tumor removal can be promoted by biomaterials that enhance the bone regeneration and prevent the tumor relapse. Herein, we obtained several nanopatterns by self-assembly of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) with different molecular weights and investigated the adhesion and morphology of human bone marrow mesenchymal stem cells (BMMSC) and osteosarcoma cell line (SaOS-2) on these patterns aiming to identify topography and chemistry that promote bone healing. We analyzed > 2000 cells per experimental condition using imaging software and different morphometric descriptors, namely area, perimeter, aspect ratio, circularity, surface/area, and fractal dimension of cellular contour (FDC). The obtained data were used as inputs for principal component analysis, which showed distinct response of BMMSC and SaOS-2 to the surface topography and chemistry. Among the studied substrates, micellar nanopatterns assembled from the copolymer with high molecular weight promote the adhesion and spreading of BMMSC and have an opposite effect on SaOS-2. This nanopattern is thus beneficial for bone regeneration after injury or pathology, e.g. bone fracture or tumor removal.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2022 Tipo de documento: Article