Your browser doesn't support javascript.
loading
Identifying enhancer properties associated with genetic risk for complex traits using regulome-wide association studies.
Casella, Alex M; Colantuoni, Carlo; Ament, Seth A.
Afiliação
  • Casella AM; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
  • Colantuoni C; Medical Scientist Training Program, UMSOM, Baltimore, Maryland, United States of America.
  • Ament SA; Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
PLoS Comput Biol ; 18(9): e1010430, 2022 09.
Article em En | MEDLINE | ID: mdl-36070311
ABSTRACT
Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three

steps:

(i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Herança Multifatorial / Estudo de Associação Genômica Ampla Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Herança Multifatorial / Estudo de Associação Genômica Ampla Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos