Your browser doesn't support javascript.
loading
Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function.
Ravichandran, Mirunalini; Rafalski, Dominik; Davies, Claudia I; Ortega-Recalde, Oscar; Nan, Xinsheng; Glanfield, Cassandra R; Kotter, Annika; Misztal, Katarzyna; Wang, Andrew H; Wojciechowski, Marek; Razew, Michal; Mayyas, Issam M; Kardailsky, Olga; Schwartz, Uwe; Zembrzycki, Krzysztof; Morison, Ian M; Helm, Mark; Weichenhan, Dieter; Jurkowska, Renata Z; Krueger, Felix; Plass, Christoph; Zacharias, Martin; Bochtler, Matthias; Hore, Timothy A; Jurkowski, Tomasz P.
Afiliação
  • Ravichandran M; Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 1301, San Francisco, CA 94143, USA.
  • Rafalski D; Universität Stuttgart, Abteilung Biochemie, Institute für Biochemie und Technische Biochemie, Allmandring 31, Stuttgart D-70569, Germany.
  • Davies CI; International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland.
  • Ortega-Recalde O; University of Otago, Department of Anatomy, Dunedin 9016, New Zealand.
  • Nan X; University of Otago, Department of Anatomy, Dunedin 9016, New Zealand.
  • Glanfield CR; Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK.
  • Kotter A; University of Otago, Department of Anatomy, Dunedin 9016, New Zealand.
  • Misztal K; Johannes-Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany.
  • Wang AH; International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland.
  • Wojciechowski M; University of Otago, Department of Anatomy, Dunedin 9016, New Zealand.
  • Razew M; International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland.
  • Mayyas IM; International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland.
  • Kardailsky O; University of Otago, Department of Pathology, Dunedin 9016, New Zealand.
  • Schwartz U; University of Otago, Department of Anatomy, Dunedin 9016, New Zealand.
  • Zembrzycki K; University of Regensburg, Computational Core Unit, 93053 Regensburg, Germany.
  • Morison IM; Institute of Fundamental Technological Research, Department of Biosystems and Soft Matter PAS, Pawinskiego 5B, Warsaw, Poland.
  • Helm M; University of Otago, Department of Pathology, Dunedin 9016, New Zealand.
  • Weichenhan D; Johannes-Gutenberg-Universität Mainz, Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, 55128 Mainz, Germany.
  • Jurkowska RZ; German Cancer Research Center (DKFZ), Division of Cancer Epigenomics, Heidelberg, Germany.
  • Krueger F; Cardiff University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, UK.
  • Plass C; Bioinformatics Group, The Babraham Institute, Cambridge CB22 3AT, UK.
  • Zacharias M; German Cancer Research Center (DKFZ), Division of Cancer Epigenomics, Heidelberg, Germany.
  • Bochtler M; Physics Department, Technical University of Munich, James-Franck Str. 1, 85748 Garching, Germany.
  • Hore TA; International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Trojdena 4, 02-109 Warsaw, Poland.
  • Jurkowski TP; Institute of Biochemistry and Biophysics PAS (IBB), Pawinskiego 5a, 02-106 Warsaw, Poland.
Sci Adv ; 8(36): eabm2427, 2022 09 09.
Article em En | MEDLINE | ID: mdl-36070377
ABSTRACT
TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: 5-Metilcitosina / Dioxigenases Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: 5-Metilcitosina / Dioxigenases Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos