Your browser doesn't support javascript.
loading
Anaerobic co-digestion of marine macroalgae waste and fruit waste: Effect of mixture ratio on biogas production.
Pardilhó, Sara; Boaventura, Rui; Almeida, Manuel; Maia Dias, Joana.
Afiliação
  • Pardilhó S; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Metallurgical and Materials Engineering, Faculty of Engineering of University of Porto, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, Universit
  • Boaventura R; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering of University of Porto, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University
  • Almeida M; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Metallurgical and Materials Engineering, Faculty of Engineering of University of Porto, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, Universit
  • Maia Dias J; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Metallurgical and Materials Engineering, Faculty of Engineering of University of Porto, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, Universit
J Environ Manage ; 322: 116142, 2022 Nov 15.
Article em En | MEDLINE | ID: mdl-36081263
Marine macroalgae waste (MMW) was used at different mixing ratios with fruit waste (FW) to evaluate the potential of co-digestion in enhancing methane yield. The process was conducted at mesophilic conditions (37 °C) with a fixed amount of biomass (10 g, 3.5% TS) and inoculum (150 mL; digested sewage sludge) and using MMW:FW ratios from 40:60 to 70:30. The results showed inhibition of the process for most of the studied substrate ratios, and in the mono-digestion of both substrates, possibly due to the accumulation of volatile fatty acids. A maximum biogas yield of 295 mL/g VS with 72% of methane was however obtained for the 60MMW:40FW ratio, corresponding to an estimated maximum methane yield of 213 mL/g VS and around 46% of the theoretical maximum methane production (49% of organic matter removal). The results show that the co-digestion of MMW with FW enhances the methane yield of both independent substrates.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alga Marinha / Biocombustíveis Idioma: En Revista: J Environ Manage Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alga Marinha / Biocombustíveis Idioma: En Revista: J Environ Manage Ano de publicação: 2022 Tipo de documento: Article