Your browser doesn't support javascript.
loading
Anisotropy Engineering of ZnO Nanoporous Frameworks: A Lattice Dynamics Simulation.
Sa, Na; Chong, Sue-Sin; Wang, Hui-Qiong; Zheng, Jin-Cheng.
Afiliação
  • Sa N; Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China.
  • Chong SS; Department of Physics, Xiamen University Malaysia, Sepang 43900, Malaysia.
  • Wang HQ; Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia.
  • Zheng JC; Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China.
Nanomaterials (Basel) ; 12(18)2022 Sep 18.
Article em En | MEDLINE | ID: mdl-36145028
ABSTRACT
The anisotropy engineering of nanoporous zinc oxide (ZnO) frameworks has been performed by lattice dynamics simulation. A series of zinc oxide (ZnO) nanoporous framework structures was designed by creating nanopores with different sizes and shapes. We examined the size effects of varying several features of the nanoporous framework (namely, the removal of layers of atoms, surface-area-to-volume ratio, coordination number, porosity, and density) on its mechanical properties (including bulk modulus, Young's modulus, elastic constant, and Poisson ratio) with both lattice dynamics simulations. We also found that the anisotropy of nanoporous framework can be drastically tuned by changing the shape of nanopores. The maximum anisotropy (defined by Ymax/Ymin) of the Young's modulus value increases from 1.2 for bulk ZnO to 2.5 for hexagon-prism-shaped ZnO nanoporous framework structures, with a density of 2.72 g/cm3, and, even more remarkably, to 89.8 for a diamond-prism-shape at a density of 1.72 g/cm3. Our findings suggest a new route for desirable anisotropy and mechanical property engineering with nanoporous frameworks by editing the shapes of the nanopores for the desired anisotropy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China