Phldb2 is essential for regulating hippocampal dendritic spine morphology through drebrin in an adult-type isoform-specific manner.
Neurosci Res
; 185: 1-10, 2022 Dec.
Article
em En
| MEDLINE
| ID: mdl-36162735
Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP3. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover. Drebrin is one of the most abundant neuron-specific F-actin-binding proteins that are pivotal for synaptic morphology and plasticity. We observed that Phldb2 bound to drebrin A (adult-type drebrin), but not to drebrin E (embryonic-type drebrin). In the absence of Phldb2, the subcellular localization of drebrin A in the hippocampal spines and its distribution in the hippocampus were altered. Immature spines, such as the filopodium type, increased relatively in the CA1 regions of the hippocampus, whereas mushroom spines, a typical mature type, decreased in Phldb2-/- mice. Phldb2 suppressed the formation of an abnormal filopodium structure induced by drebrin A overexpression. Taken together, these findings demonstrate that Phldb2 is pivotal for dendritic spine morphology and possibly for synaptic plasticity in mature animals by regulating drebrin A localization.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Espinhas Dendríticas
/
Hipocampo
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Neurosci Res
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2022
Tipo de documento:
Article