A case for an active eukaryotic marine biosphere during the Proterozoic era.
Proc Natl Acad Sci U S A
; 119(41): e2122042119, 2022 10 11.
Article
em En
| MEDLINE
| ID: mdl-36191216
The microfossil record demonstrates the presence of eukaryotic organisms in the marine ecosystem by about 1,700 million years ago (Ma). Despite this, steranes, a biomarker indicator of eukaryotic organisms, do not appear in the rock record until about 780 Ma in what is known as the "rise of algae." Before this, it is argued that eukaryotes were minor ecosystem members, with prokaryotes dominating both primary production and ecosystem dynamics. In this view, the rise of algae was possibly sparked by increased nutrient availability supplying the higher nutrient requirements of eukaryotic algae. Here, we challenge this view. We use a size-based ecosystem model to show that the size distribution of preserved eukaryotic microfossils from 1,700 Ma and onward required an active eukaryote ecosystem complete with phototrophy, osmotrophy, phagotrophy, and mixotrophy. Model results suggest that eukaryotes accounted for one-half or more of the living biomass, with eukaryotic algae contributing to about one-half of total marine primary production. These ecosystems lived with deep-water phosphate levels of at least 10% of modern levels. The general lack of steranes in the pre-780-Ma rock record could be a result of poor preservation.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Ecossistema
/
Eucariotos
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Dinamarca