Your browser doesn't support javascript.
loading
ChemPert: mapping between chemical perturbation and transcriptional response for non-cancer cells.
Zheng, Menglin; Okawa, Satoshi; Bravo, Miren; Chen, Fei; Martínez-Chantar, María-Luz; Del Sol, Antonio.
Afiliação
  • Zheng M; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-sur-Alzette, L-4367 Belvaux, Luxembourg.
  • Okawa S; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, Esch-sur-Alzette, L-4367 Belvaux, Luxembourg.
  • Bravo M; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
  • Chen F; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Bizkaia, Spain.
  • Martínez-Chantar ML; German Research Center for Artificial Intelligence (DFKI), 66123 Saarbrücken, Germany.
  • Del Sol A; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
Nucleic Acids Res ; 51(D1): D877-D889, 2023 01 06.
Article em En | MEDLINE | ID: mdl-36200827
Prior knowledge of perturbation data can significantly assist in inferring the relationship between chemical perturbations and their specific transcriptional response. However, current databases mostly contain cancer cell lines, which are unsuitable for the aforementioned inference in non-cancer cells, such as cells related to non-cancer disease, immunology and aging. Here, we present ChemPert (https://chempert.uni.lu/), a database consisting of 82 270 transcriptional signatures in response to 2566 unique perturbagens (drugs, small molecules and protein ligands) across 167 non-cancer cell types, as well as the protein targets of 57 818 perturbagens. In addition, we develop a computational tool that leverages the non-cancer cell datasets, which enables more accurate predictions of perturbation responses and drugs in non-cancer cells compared to those based onto cancer databases. In particular, ChemPert correctly predicted drug effects for treating hepatitis and novel drugs for osteoarthritis. The ChemPert web interface is user-friendly and allows easy access of the entire datasets and the computational tool, providing valuable resources for both experimental researchers who wish to find datasets relevant to their research and computational researchers who need comprehensive non-cancer perturbation transcriptomics datasets for developing novel algorithms. Overall, ChemPert will facilitate future in silico compound screening for non-cancer cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Bases de Dados Genéticas Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Luxemburgo

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Bases de Dados Genéticas Limite: Humans Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Luxemburgo