Your browser doesn't support javascript.
loading
Artificial intelligence to distinguish retinal vein occlusion patients using color fundus photographs.
Ren, Xiang; Feng, Wei; Ran, Ruijin; Gao, Yunxia; Lin, Yu; Fu, Xiangyu; Tao, Yunhan; Wang, Ting; Wang, Bin; Ju, Lie; Chen, Yuzhong; He, Lanqing; Xi, Wu; Liu, Xiaorong; Ge, Zongyuan; Zhang, Ming.
Afiliação
  • Ren X; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Feng W; Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Ran R; Beijing Airdoc Technology Co Ltd, Beijing, China.
  • Gao Y; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Lin Y; Minda Hospital of Hubei Minzu University, Enshi, China.
  • Fu X; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Tao Y; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Wang T; Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Wang B; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Ju L; Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Chen Y; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • He L; Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Xi W; Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
  • Liu X; Beijing Airdoc Technology Co Ltd, Beijing, China.
  • Ge Z; Beijing Airdoc Technology Co Ltd, Beijing, China.
  • Zhang M; ECSE, Faculty of Engineering, Monash University, Melbourne, VIC, Australia.
Eye (Lond) ; 37(10): 2026-2032, 2023 07.
Article em En | MEDLINE | ID: mdl-36302974
PURPOSE: Our aim is to establish an AI model for distinguishing color fundus photographs (CFP) of RVO patients from normal individuals. METHODS: The training dataset included 2013 CFP from fellow eyes of RVO patients and 8536 age- and gender-matched normal CFP. Model performance was assessed in two independent testing datasets. We evaluated the performance of the AI model using the area under the receiver operating characteristic curve (AUC), accuracy, precision, specificity, sensitivity, and confusion matrices. We further explained the probable clinical relevance of the AI by extracting and comparing features of the retinal images. RESULTS: Our model achieved an average AUC was 0.9866 (95% CI: 0.9805-0.9918), accuracy was 0.9534 (95% CI: 0.9421-0.9639), precision was 0.9123 (95% CI: 0.8784-9453), specificity was 0.9810 (95% CI: 0.9729-0.9884), and sensitivity was 0.8367 (95% CI: 0.7953-0.8756) for identifying fundus images of RVO patients in training dataset. In independent external datasets 1, the AUC of the RVO group was 0.8102 (95% CI: 0.7979-0.8226), the accuracy of 0.7752 (95% CI: 0.7633-0.7875), the precision of 0.7041 (95% CI: 0.6873-0.7211), specificity of 0.6499 (95% CI: 0.6305-0.6679) and sensitivity of 0.9124 (95% CI: 0.9004-0.9241) for RVO group. There were significant differences in retinal arteriovenous ratio, optic cup to optic disc ratio, and optic disc tilt angle (p = 0.001, p = 0.0001, and p = 0.0001, respectively) between the two groups in training dataset. CONCLUSION: We trained an AI model to classify color fundus photographs of RVO patients with stable performance both in internal and external datasets. This may be of great importance for risk prediction in patients with retinal venous occlusion.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Óptico / Oclusão da Veia Retiniana Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Eye (Lond) Assunto da revista: OFTALMOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disco Óptico / Oclusão da Veia Retiniana Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Eye (Lond) Assunto da revista: OFTALMOLOGIA Ano de publicação: 2023 Tipo de documento: Article