High water temperature raised the requirements of methionine for spotted seabass (Lateolabrax maculatus).
Fish Physiol Biochem
; 2022 Nov 02.
Article
em En
| MEDLINE
| ID: mdl-36322361
This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 â, and high temperature (HT): 33 â]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 â and 1.26% of the diet at 33 â, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 â or 33 â, respectively.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Fish Physiol Biochem
Ano de publicação:
2022
Tipo de documento:
Article