Your browser doesn't support javascript.
loading
Fast Prediction of the Equivalent Alkane Carbon Number Using Graph Machines and Neural Networks.
Delforce, Lucie; Duprat, François; Ploix, Jean-Luc; Ontiveros, Jesus Fermín; Goussard, Valentin; Nardello-Rataj, Véronique; Aubry, Jean-Marie.
Afiliação
  • Delforce L; University of Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000Lille, France.
  • Duprat F; Laboratoire de Chimie Organique, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005Paris, France.
  • Ploix JL; Laboratoire de Chimie Organique, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005Paris, France.
  • Ontiveros JF; University of Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000Lille, France.
  • Goussard V; University of Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000Lille, France.
  • Nardello-Rataj V; University of Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000Lille, France.
  • Aubry JM; University of Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000Lille, France.
ACS Omega ; 7(43): 38869-38881, 2022 Nov 01.
Article em En | MEDLINE | ID: mdl-36340160
The hydrophobicity of oils is a key parameter to design surfactant/oil/water (SOW) macro-, micro-, or nano-dispersed systems with the desired features. This essential physicochemical characteristic is quantitatively expressed by the equivalent alkane carbon number (EACN) whose experimental determination is tedious since it requires knowledge of the phase behavior of the SOW systems at different temperatures and for different surfactant concentrations. In this work, two mathematical models are proposed for the rapid prediction of the EACN of oils. They have been designed using artificial intelligence (machine-learning) methods, namely, neural networks (NN) and graph machines (GM). While the GM model is implemented from the SMILES codes of a 111-molecule training set of known EACN values, the NN model is fed with some σ-moment descriptors computed with the COSMOtherm software for the 111-molecule set. In a preliminary step, the leave-one-out algorithm is used to select, given the available data, the appropriate complexity of the two models. A comparison of the EACNs of liquids of a fresh set of 10 complex cosmetic and perfumery molecules shows that the two approaches provide comparable results in terms of accuracy and reliability. Finally, the NN and GM models are applied to nine series of homologous compounds, for which the GM model results are in better agreement with the experimental EACN trends than the NN model predictions. The results obtained by the GMs and by the NN based on σ-moments can be duplicated with the demonstration tool available for download as detailed in the Supporting Information.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: ACS Omega Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França