Your browser doesn't support javascript.
loading
Biochar reduces bioavailability of phosphorus during swine manure composting: Roles of phoD-harboring bacterial community.
Yin, Yanan; Yang, Chao; Li, Mengtong; Yang, Sai; Tao, Xiaohui; Zheng, Yucong; Wang, Xiaochang; Chen, Rong.
Afiliação
  • Yin Y; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Deve
  • Yang C; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
  • Li M; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
  • Yang S; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
  • Tao X; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
  • Zheng Y; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Deve
  • Wang X; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Deve
  • Chen R; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Deve
Sci Total Environ ; 858(Pt 2): 159926, 2023 Feb 01.
Article em En | MEDLINE | ID: mdl-36343827
The bioavailability of phosphorus is a vital index for evaluating the quality of compost products. This study examined the effects of adding wheat straw biochar (WSB) and bamboo charcoal (BC) on the transformation of various phosphorus fractions during composting, as well as analyzing the roles of the phoD-harboring bacterial community in the transformation of phosphorus fractions. Adding WSB and BC reduced the available phosphorus content in the compost products by 35.2 % and 38.5 %, respectively. Redundancy analysis showed that the alkaline phosphatase content and pH were the most important factors that affected the transformation of phosphorus fractions. The addition of biochar resulted in changes in the composition and structures of the phoD-harboring bacteria communities during composting. In addition, the key bacterial genera that secreted alkaline phosphatase and decomposed different forms of phosphorus under WSB and BC were different compared with those under control. Network and correlation analysis demonstrated that the activities of phoD-harboring bacteria could have been enhanced by biochar to accelerate the consumption of available phosphorus, and the activities of key phosphorus-solubilizing bacteria (Lysobacter, Methylobacterium, and Saccharothrix) might be inhibited when the pH increased, thereby increasing the insoluble phosphorus content.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostagem Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostagem Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article