In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model.
Int J Pharm X
; 4: 100139, 2022 Dec.
Article
em En
| MEDLINE
| ID: mdl-36420371
Apoptosis is an important process that directly affects the response of cancer cells to anticancer drugs. Among different factors involved in this process, the BcL-xL protein plays a critical role in inhibiting apoptosis induced by chemotherapy agents. Henceforth, its downregulation may have a synergistic activity that lowers the necessary dose of anticancer agents. In this study, anti-Bcl-xL siRNA were formulated within an EGFR-targeted nanomedicine with scFv ligands (NM-scFv) and its activity was tested in the non-small cell lung cancer (NSCLC) cell line H460. The obtained NMs-scFv anti-Bcl-xL were suitable for intravenous injection with sizes around 100 nm, a high monodispersity level and good siRNA complexation capacity. The nanocomplex's functionalization with anti-EGFR scFv ligands was shown to allow an active gene delivery into H460 cells and led to approximately 63% of gene silencing at both mRNA and protein levels. The NM-scFv anti-Bcl-xL improved the apoptotic activity of cisplatin and reduced the cisplatin IC50 value in H460 cells by a factor of around three from 0.68 ± 0.12 µM to 2.21 ± 0.18 µM (p < 0.01), respectively, in comparison to that of NM-scFv formulated with control siRNA (p > 0.05).
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Int J Pharm X
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
França