Your browser doesn't support javascript.
loading
Amorphous SnO2 decorated ZnSn(OH)6 promotes interfacial hydroxyl polarization for deep photocatalytic toluene mineralization.
Chen, Lvcun; Li, Kanglu; Yang, Yan; Xue, Ting; Wang, Hong; Lei, Ben; Sheng, Jianping; Dong, Fan; Sun, Yanjuan.
Afiliação
  • Chen L; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Li K; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
  • Yang Y; School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China; S
  • Xue T; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Wang H; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Lei B; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Sheng J; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Dong F; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Sun Y; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; Institute of Fundamental and Frontier Sciences & School of Resouces and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. Electroni
J Hazard Mater ; 444(Pt B): 130436, 2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36435041
ABSTRACT
Surface hydroxyl groups play a decisive role in the generation of hydroxyl radicals with stronger oxidizing ability, which is indispensable in photocatalytic VOCs removal, especially under the condition of low humidity. In this work, non-noble amorphous SnO2 decorated ZnSn(OH)6 (ZSH) was synthesized by an in-situ method. The charge transport, reactant activation and hydroxyl polarization are enhanced through decoration of amorphous SnO2 on ZSH. Combined with the designed experiment, in-situ EPR, DTF calculation and in-situ DRIFTS, the role and mechanism of interfacial hydroxyl polarization are revealed on SnO2 decorated ZnSn(OH)6. Compared with pristine ZSH and noble-metal modified ZSH, the toluene degradation rate of amorphous SnO2 decorated ZSH is increased by 13.0 and 3.8 times, and the toluene mineralization rate is increased by 5.2 and 2.2 times. The ZSH-24 sample maintains a high toluene degradation activity after 6 cyclic utilization without catalyst deactivation. This work emphasizes the role of non-noble metal and the origin of hydroxyl group polarization on ZnSn(OH)6 for photocatalytic VOCs mineralization.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China