Your browser doesn't support javascript.
loading
Unveiling the transcriptomic landscape and the potential antagonist feedback mechanisms of TGF-ß superfamily signaling module in bone and osteoporosis.
Wang, Ying-Wen; Lin, Wen-Yu; Wu, Fang-Ju; Luo, Ching-Wei.
Afiliação
  • Wang YW; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
  • Lin WY; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
  • Wu FJ; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
  • Luo CW; Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan. luocw@nycu.edu.tw.
Cell Commun Signal ; 20(1): 190, 2022 11 28.
Article em En | MEDLINE | ID: mdl-36443839
ABSTRACT

BACKGROUND:

TGF-ß superfamily signaling is indispensable for bone homeostasis. However, the global expression profiles of all the genes that make up this signaling module in bone and bone-related diseases have not yet been well characterized.

METHODS:

Transcriptomic datasets from human bone marrows, bone marrow-derived mesenchymal stem cells (MSCs) and MSCs of primary osteoporotic patients were used for expression profile analyses. Protein treatments, gene quantification, reporter assay and signaling dissection in MSC lines were used to clarify the interactive regulations and feedback mechanisms between TGF-ß superfamily ligands and antagonists. Ingenuity Pathway Analysis was used for network construction.

RESULTS:

We identified TGFB1 in the ligand group that carries out SMAD2/3 signaling and BMP8A, BMP8B and BMP2 in the ligand group that conducts SMAD1/5/8 signaling have relatively high expression levels in normal bone marrows and MSCs. Among 16 antagonist genes, the dominantly expressed TGF-ß superfamily ligands induced only NOG, GREM1 and GREM2 via different SMAD pathways in MSCs. These induced antagonist proteins further showed distinct antagonisms to the treated ligands and thus would make up complicated negative feedback networks in bone. We further identified TGF-ß superfamily signaling is enriched in MSCs of primary osteoporosis. Enhanced expression of the genes mediating TGF-ß-mediated SMAD3 signaling and the genes encoding TGF-ß superfamily antagonists served as significant features to osteoporosis.

CONCLUSION:

Our data for the first time unveiled the transcription landscape of all the genes that make up TGF-ß superfamily signaling module in bone. The feedback mechanisms and regulatory network prediction of antagonists provided novel hints to treat osteoporosis. Video Abstract.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoporose / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Commun Signal Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoporose / Transcriptoma Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Commun Signal Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Taiwan