A CT-Based Deep Learning Radiomics Nomogram to Predict Histological Grades of Head and Neck Squamous Cell Carcinoma.
Acad Radiol
; 30(8): 1591-1599, 2023 08.
Article
em En
| MEDLINE
| ID: mdl-36460582
RATIONALE AND OBJECTIVES: Accurate pretreatment assessment of histological differentiation grade of head and neck squamous cell carcinoma (HNSCC) is crucial for prognosis evaluation. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict histological differentiation grades of HNSCC. MATERIALS AND METHODS: A total of 204 patients with HNSCC who underwent CECT scans were enrolled in this study. The participants recruited from two hospitals were split into a training set (n=124, 74 well/moderately differentiated and 50 poorly differentiated) of patients from one hospital and an external test set of patients from the other hospital (n=80, 49 well/moderately differentiated and 31 poorly differentiated). CECT-based manually-extracted radiomics (MER) features and deep learning (DL) features were extracted and selected. The selected MER features and DL features were then combined to construct a DLRN via multivariate logistic regression. The predictive performance of the DLRN was assessed using ROCs and decision curve analysis (DCA). RESULTS: Three MER features and seven DL features were finally selected. The DLRN incorporating the selected MER and DL features showed good predictive value for the histological differentiation grades of HNSCC (well/moderately differentiated vs. poorly differentiated) in both the training (AUC, 0.878) and test (AUC, 0.822) sets. DCA demonstrated that the DLRN was clinically useful for predicting histological differentiation grades of HNSCC. CONCLUSION: A CECT-based DLRN was constructed to predict histological differentiation grades of HNSCC. The DLRN showed good predictive efficacy and might be useful for prognostic evaluation of patients with HNSCC.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Aprendizado Profundo
/
Neoplasias de Cabeça e Pescoço
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Acad Radiol
Assunto da revista:
RADIOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China