Your browser doesn't support javascript.
loading
Insight into sulfamethoxazole effects on aerobic denitrification by strain Pseudomonas aeruginosa PCN-2: From simultaneous degradation performance to transcriptome analysis.
Zhao, Yuanyi; Min, Hongchao; Luo, Kongyan; Chen, Huan; Chen, Qian; Sun, Weiling.
Afiliação
  • Zhao Y; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China.
  • Min H; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
  • Luo K; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China.
  • Chen H; Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, United States.
  • Chen Q; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China. Electronic addre
  • Sun W; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China.
Chemosphere ; 313: 137471, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36493888
ABSTRACT
It is a well-established fact that aerobic denitrifying strains are profoundly affected by antibiotics, but bacterium performing simultaneous aerobic denitrification and antibiotic degradation is hardly reported. Here, a typical aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 was discovered to be capable of sulfamethoxazole (SMX) degradation. The results showed that nitrate removal efficiency was decreased from 100% to 88.12%, but the resistance of strain PCN-2 to SMX stress was enhanced with the increment of SMX concentration from 0 to 100 mg/L. Transcriptome analysis revealed that the down-regulation of energy metabolism pathways rather than the denitrifying functional genes was responsible for the suppressed nitrogen removal, while the up-regulation of antibiotic resistance pathways (e.g., biofilm formation, multi-drug efflux system, and quorum sensing) ensured the survival of bacterium and the carrying out of aerobic denitrification. Intriguingly, strain PCN-2 could degrade SMX during aerobic denitrification. Seven metabolites were identified by the UHPLC-MS, and three degradation pathways (which includes a new pathway that has never been reported) was proposed combined with the expressions of drug metabolic genes (e.g., cytP450, FMN, ALDH and NAT). This work provides a mechanistic understanding of the metabolic adaption of strain PCN-2 under SMX stress, which provided a broader idea for the treatment of SMX-containing wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Desnitrificação Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Desnitrificação Idioma: En Revista: Chemosphere Ano de publicação: 2023 Tipo de documento: Article