Your browser doesn't support javascript.
loading
Ultrashort spin-orbit torque generated by femtosecond laser pulses.
Janda, T; Ostatnický, T; Nemec, P; Schmoranzerová, E; Campion, R; Hills, V; Novák, V; Sobán, Z; Wunderlich, J.
Afiliação
  • Janda T; Institute for Experimental and Applied Physics, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany. tomas.janda@ur.de.
  • Ostatnický T; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic. tomas.janda@ur.de.
  • Nemec P; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic.
  • Schmoranzerová E; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic.
  • Campion R; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic.
  • Hills V; School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
  • Novák V; School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
  • Sobán Z; Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic.
  • Wunderlich J; Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic.
Sci Rep ; 12(1): 21550, 2022 Dec 13.
Article em En | MEDLINE | ID: mdl-36513672
ABSTRACT
To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin-orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin-orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha