Non-collinear magnetic configuration mediated exchange coupling at the interface of antiferromagnet and rare-earth nanolayers.
Sci Rep
; 12(1): 21836, 2022 Dec 17.
Article
em En
| MEDLINE
| ID: mdl-36528700
Mn[Formula: see text]Ir/CoFe bilayer is a prototypical exchange-coupled antiferromagnet (AF)-ferromagnet (FM) system. Nevertheless, a strong exchange coupling between FM and rare-earth(RE) interfaces of Fe/Dy and Fe/Tb has been established earlier. Strong coupling at the FM-RE interface originates from the number of irreversible spins owing to the imbalance in the non-collinear configuration in RE. However, exchange coupling between AF-RE could not be established due to the minimal number of irreversible spins in AF and RE. A frustrated inter-domain magnetic interaction leads to the coexistence of spin-freezing-like ordering around the temperature range of helical spin modulation at the exchange-coupled interfaces of RE-based specimens. To overcome the lack of coupling between the AF-RE interface, we use a sandwich structure of AF-FM-RE layers (Mn[Formula: see text]Ir/CoFe/Dy) as we demonstrate establishing considerable exchange bias in the system. Changing the bias direction during field cooling introduces possible differences in non-collinear directions (helicities), which affects the number of irreversible spins and consequent exchange coupling differently for opposite directions. The non-collinear structures in RE are topologically stable; thus, their directions of orientation can be regarded as an additional degree of freedom, which can be manipulated in all-spin-based technology.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China