Your browser doesn't support javascript.
loading
Integration of Li4Ti5O12 Crystalline Films on Silicon Toward High-Rate Performance Lithionic Devices.
Lacey, Steven D; Gilardi, Elisa; Müller, Elisabeth; Merckling, Clement; Saint-Girons, Guillaume; Botella, Claude; Bachelet, Romain; Pergolesi, Daniele; El Kazzi, Mario.
Afiliação
  • Lacey SD; Electrochemistry Laboratory, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland.
  • Gilardi E; National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Lausanne CH-1015, Switzerland.
  • Müller E; National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Lausanne CH-1015, Switzerland.
  • Merckling C; Multiscale Materials Experiments Laboratory, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland.
  • Saint-Girons G; Electron Microscopy Facility, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland.
  • Botella C; Imec, Kapeldreef 75, Leuven 3001, Belgium.
  • Bachelet R; KU Leuven, Material Engineering, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
  • Pergolesi D; Institut des Nanotechnologies de Lyon (INL-CNRS UMR 5270), Université de Lyon, Ecole Centrale de Lyon, Ecully Cedex 69134, France.
  • El Kazzi M; Institut des Nanotechnologies de Lyon (INL-CNRS UMR 5270), Université de Lyon, Ecole Centrale de Lyon, Ecully Cedex 69134, France.
ACS Appl Mater Interfaces ; 15(1): 1535-1544, 2023 Jan 11.
Article em En | MEDLINE | ID: mdl-36576942
The growth of crystalline Li-based oxide thin films on silicon substrates is essential for the integration of next-generation solid-state lithionic and electronic devices including on-chip microbatteries, memristors, and sensors. However, growing crystalline oxides directly on silicon typically requires high temperatures and oxygen partial pressures, which leads to the formation of undesired chemical species at the interface compromising the crystal quality of the films. In this work, we employ a 2 nm gamma-alumina (γ-Al2O3) buffer layer on Si substrates in order to grow crystalline thin films of Li4Ti5O12 (LTO), a well-known active material for lithium-ion batteries. The ultrathin γ-Al2O3 layer enables the formation of a stable heterostructure with sharp interfaces and drastically improves the LTO crystallographic and electrochemical properties. Long-term galvanostatic cycling of 50 nm LTO films in liquid-based half-cells demonstrates a high capacity retention of 91% after 5000 cycles at 100 C. Rate capability tests showcase a specific charge of 56 mA h g-1 at an exceptional C-rate of 5000 C (15 mA cm-2). Moreover, with sub-millisecond current pulse tests, the reported thin-film heterostructure exhibits rapid Li-ion (de)intercalation, which could lead to fast switching timescales in resistive memory devices and electrochemical transistors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça