Dry Deposition Methods Based on Turbulence Kinetic Energy: Part 1. Evaluation of Various Resistances and Sensitivity Studies Using a Single-Point Model.
J Geophys Res Atmos
; 127(22): 1-26, 2022 Nov 25.
Article
em En
| MEDLINE
| ID: mdl-36589524
Different functions are used to account for turbulence strength in the atmospheric boundary layer for different stability regimes. These functions are one of the sources for differences among different atmospheric models' predictions and associated biases. Also, turbulence strength is underrepresented in some of the resistance formulations. To address these issues with dry deposition, firstly we take advantage of three-dimensional (3-D) turbulence information in estimating resistances by proposing and validating a 3-D turbulence velocity scale that is relevant for different stability regimes of boundary layer. Secondly, we hypothesize and validate that friction velocity measured by 3-D sonic anemometer can be effectively replaced by the new turbulence velocity scale multiplied by the von Karman constant. Finally, we (1) present a set of resistance formulations for ozone (O3) based on the 3-D turbulence velocity scale; (2) intercompare estimations of such resistances with those obtained using existing formulations; and, (3) evaluate simulated O3 fluxes using a single-point dry deposition model against long-term observations of O3 fluxes at the Harvard Forest (MA) site. Results indicate that the new resistance formulations work very well in simulating surface latent heat and O3 fluxes when compared to respective existing formulations and measurements at a decadal time scale. Findings from this research may help to improve the capability of dry deposition schemes for better estimation of dry deposition fluxes and create opportunities for the development of a community dry deposition model for use in regional/global air quality models.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
J Geophys Res Atmos
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos