Your browser doesn't support javascript.
loading
DIST: spatial transcriptomics enhancement using deep learning.
Zhao, Yanping; Wang, Kui; Hu, Gang.
Afiliação
  • Zhao Y; School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China.
  • Wang K; School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China.
  • Hu G; School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China.
Brief Bioinform ; 24(2)2023 03 19.
Article em En | MEDLINE | ID: mdl-36653906
Spatially resolved transcriptomics technologies enable comprehensive measurement of gene expression patterns in the context of intact tissues. However, existing technologies suffer from either low resolution or shallow sequencing depth. Here, we present DIST, a deep learning-based method that imputes the gene expression profiles on unmeasured locations and enhances the gene expression for both original measured spots and imputed spots by self-supervised learning and transfer learning. We evaluate the performance of DIST for imputation, clustering, differential expression analysis and functional enrichment analysis. The results show that DIST can impute the gene expression accurately, enhance the gene expression for low-quality data, help detect more biological meaningful differentially expressed genes and pathways, therefore allow for deeper insights into the biological processes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China