Your browser doesn't support javascript.
loading
Pod-based e-liquids impair human vascular endothelial cell function.
Majid, Sana; Weisbrod, Robert M; Fetterman, Jessica L; Keith, Rachel J; Rizvi, Syed H M; Zhou, Yuxiang; Behrooz, Leili; Robertson, Rose Marie; Bhatnagar, Aruni; Conklin, Daniel J; Hamburg, Naomi M.
Afiliação
  • Majid S; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Weisbrod RM; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Fetterman JL; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Keith RJ; University of Louisville School of Medicine, Louisville, KY, United States of America.
  • Rizvi SHM; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Zhou Y; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Behrooz L; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
  • Robertson RM; American Heart Association, Dallas, TX, United States of America.
  • Bhatnagar A; University of Louisville School of Medicine, Louisville, KY, United States of America.
  • Conklin DJ; University of Louisville School of Medicine, Louisville, KY, United States of America.
  • Hamburg NM; Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America.
PLoS One ; 18(1): e0280674, 2023.
Article em En | MEDLINE | ID: mdl-36701344
Pod-based electronic (e-) cigarettes more efficiently deliver nicotine using a protonated formulation. The cardiovascular effects associated with these devices are poorly understood. We evaluated whether pod-based e-liquids and their individual components impair endothelial cell function. We isolated endothelial cells from people who are pod users (n = 10), tobacco never users (n = 7), and combustible cigarette users (n = 6). After a structured use, pod users had lower acetylcholine-mediated endothelial nitric oxide synthase (eNOS) activation compared with never users and was similar to levels from combustible cigarette users (overall P = 0.008, P = 0.01 pod vs never; P = 0.96 pod vs combustible cigarette). The effects of pod-based e-cigarettes and their constituents on vascular cell function were further studied in commercially available human aortic endothelial cells (HAECs) incubated with flavored JUUL e-liquids or propylene glycol (PG):vegetable glycerol (VG) at 30:70 ratio with or without 60 mg/mL nicotine salt for 90 min. A progressive increase in cell death with JUUL e-liquid exposure was observed across 0.0001-1% dilutions; PG:VG vehicle with and without nicotine salt induced cell death. A23187-stimulated nitric oxide production was decreased with all JUUL e-liquid flavors, PG:VG and nicotine salt exposures. Aerosols generated by JUUL e-liquid heating similarly decreased stimulated nitric oxide production. Only mint flavored e-liquids increased inflammation and menthol flavored e-liquids enhanced oxidative stress in HAECs. In conclusion, pod e-liquids and their individual components appear to impair endothelial cell function. These findings indicate the potential harm of pod-based devices on endothelial cell function and thus may be relevant to cardiovascular injury in pod type e-cigarette users.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos do Tabaco / Sistemas Eletrônicos de Liberação de Nicotina / Vaping Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos do Tabaco / Sistemas Eletrônicos de Liberação de Nicotina / Vaping Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos