Graphene Encapsulated Low-Load Nitrogen-Doped Bimetallic Magnetic Pd/Fe@N/C Catalyst for the Reductive Amination of Nitroarene Under Mild Conditions.
Catal Letters
; : 1-12, 2023 Jan 20.
Article
em En
| MEDLINE
| ID: mdl-36714334
Aniline is a group of important platform molecules that has been widely used in the synthesis of other high-value chemicals and pharmaceutical products. How to produce high-value anilines as the high-value chemical intermediates more efficiently and environmentally has always been a research topic in the industry. Catalytic hydrogenation is an environmentally friendly method for preparing halogenated anilines. Traditional noble metal catalysts face the problems of cost and noble metals residue. To improve the purity of the product as well as the activity and recyclability of the catalyst, we prepared a Pd/Fe magnetic bimetallic catalyst supported on N-doped carbon materials to reduce nitrobenzene to aniline under mild conditions. The catalyst has a low Pd loading of 2.35%. And the prepared bimetallic Pd/Fe@N/C catalyst showed excellent catalytic reactivity with the nitrobenzene conversion rate of 99%, and the aniline selectivity of 99% under mild reaction conditions of 0.8 MPa H2 and 40 °C. A variety of halogenated and aliphatic nitro compounds were well tolerated and had been transformed to the corresponding target amine products with excellent selectivity. In addition, the novel N-doped graphene-encapsulated bimetallic magnetic Pd/Fe@N/C catalyst not only had magnetic physical properties, which was easy to separate, recover, and used for the recycling of the catalyst without metal leaching but also catalyzed highly selective reductive amination of aromatics was a green, economical and environmentally friendly reaction with the only by-product of H2O. Supplementary Information: The online version contains supplementary material available at 10.1007/s10562-023-04273-7.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Catal Letters
Ano de publicação:
2023
Tipo de documento:
Article