Your browser doesn't support javascript.
loading
Engineering ß-ketoamine covalent organic frameworks for photocatalytic overall water splitting.
Yang, Yan; Chu, Xiaoyu; Zhang, Hong-Yu; Zhang, Rui; Liu, Yu-Han; Zhang, Feng-Ming; Lu, Meng; Yang, Zhao-Di; Lan, Ya-Qian.
Afiliação
  • Yang Y; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.
  • Chu X; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.
  • Zhang HY; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.
  • Zhang R; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.
  • Liu YH; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China.
  • Zhang FM; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China. zhangfm80@163.com.
  • Lu M; School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
  • Yang ZD; Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, People's Republic of China. yangzhaodi@163.com.
  • Lan YQ; School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China. yqlan@m.scnu.edu.cn.
Nat Commun ; 14(1): 593, 2023 Feb 03.
Article em En | MEDLINE | ID: mdl-36737616
ABSTRACT
Covalent organic frameworks (COFs) are an emerging type of crystalline and porous photocatalysts for hydrogen evolution, however, the overall water splitting activity of COFs is rarely known. In this work, we firstly realized overall water splitting activity of ß-ketoamine COFs by systematically engineering N-sites, architecture, and morphology. By in situ incorporating sub-nanometer platinum (Pt) nanoparticles co-catalyst into the pores of COFs nanosheets, both Pt@TpBpy-NS and Pt@TpBpy-2-NS show visible-light-driven overall water splitting activity, with the optimal H2 and O2 evolution activities of 9.9 and 4.8 µmol in 5 h for Pt@TpBpy-NS, respectively, and a maximum solar-to-hydrogen efficiency of 0.23%. The crucial factors affecting the activity including N-sites position, nano morphology, and co-catalyst distribution were systematically explored. Further mechanism investigation reveals the tiny diversity of N sites in COFs that induces great differences in electron transfer as well as reaction potential barriers.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article