Your browser doesn't support javascript.
loading
Construction of Wash-Resistant Photonic Crystal-Coated Fabrics based on Hydrogen Bonds and a Dynamically Cross-Linking Double-Network Structure.
Fu, Yin; Shi, Qingwen; Sun, Jiuxiao; Li, Xue; Pan, Chen; Tang, Tao; Peng, Tao; Tan, Haiying.
Afiliação
  • Fu Y; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
  • Shi Q; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
  • Sun J; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
  • Li X; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
  • Pan C; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
  • Tang T; State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
  • Peng T; High-Tech Organic Fibers Key Laboratory of Sichuan Province, Bluestar Chengrand Co., Ltd., Chengdu, Sichuan 610041, China.
  • Tan H; State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
ACS Appl Mater Interfaces ; 15(6): 8480-8491, 2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36748731
ABSTRACT
Structural coloration as the most possible way to realize the ecofriendly dying process for textiles or fabrics has attracted significant attention in the past decades. However, photonic crystals (PCs) are a typical example of materials with structural color usually located on the surface of the fabrics or textiles, which make them not stable when rubbed, bent, or washed due to the weak interaction between the PC coatings and fabrics. Here, double networks were constructed between the PC coatings and the fabrics for the first time via a hydrogen bond by introducing tannic acid (TA) and dynamic cross-linking with 2-formylphenylboronic acid to increase the wash resistance of the structural colored fabrics. On modifying the monodispersed SiO2 nanoparticles, poly(dimethylsiloxane), and the fabrics, the interaction between the PC coatings and the fabrics increased by the formation of double networks. The structural color, wash, and rub resistance of the PC-coated fabrics were systematically studied. The obtained fabrics with the TA content at 0.030% (SiDT30) showed the best wash and rub resistance. The construction of double networks not only improved the wash and rub resistance of PCs but also retained the bright structural color of the PC coatings, facilitating the practical application of structural coloration in the textile industry.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China